论文标题
较高的自旋JT重力和矩阵模型双重
Higher spin JT gravity and a matrix model dual
论文作者
论文摘要
我们提出了SAAD-Shenker-Stanford二重性的概括,该二元与矩阵模型和JT重力有关,其中大量包括更高的自旋场。使用$ \ textsf {psl}(n,\ mathbb {r})$ bf理论,我们计算了该理论中小号分区功能的磁盘和概括。然后,我们研究较高的属校正,并显示这与通常的JT重力计算有何不同。特别是,映射类组的通常商不足以确保有限的答案,因此我们建议将该组扩展到使胶合积分有限的其他元素扩展。这些元素可以被认为是较大的较高的自旋差异性。然后,圆柱体对光谱形式的贡献在后期的$ t $时表现为$ t^{n-1} $,这表明偏离了常规的随机矩阵理论。为了解释这一偏差,我们建议批量理论对矩阵模型是双重的,该矩阵模型由$ n-1 $的通勤矩阵组成,与$ n-1 $相关的矩阵保留了更高的旋转费用。我们通过几何解释批量量规理论并采用Gomis等人开发的形式主义来发现其他映射类群体的存在的进一步证据。在90年代。这种形式主义引入了额外的(辅助)边界时间,因此每个保守的电荷都会在这些新方向上产生翻译。这使我们能够为$ \ textsf {psl}(3,\ mathbb {r})找到一个明确的描述,用于磁盘和小号,并将其他映射组元素视为普通的dehn Twist,但在更高的维度中。
We propose a generalization of the Saad-Shenker-Stanford duality relating matrix models and JT gravity to the case in which the bulk includes higher spin fields. Using a $\textsf{PSL}(N,\mathbb{R})$ BF theory we compute the disk and generalization of the trumpet partition function in this theory. We then study higher genus corrections and show how this differs from the usual JT gravity calculations. In particular, the usual quotient by the mapping class group is not enough to ensure finite answers and so we propose to extend this group with additional elements that make the gluing integrals finite. These elements can be thought of as large higher spin diffeomorphisms. The cylinder contribution to the spectral form factor then behaves as $T^{N-1}$ at late times $T$, signaling a deviation from conventional random matrix theory. To account for this deviation, we propose that the bulk theory is dual to a matrix model consisting of $N-1$ commuting matrices associated to the $N-1$ conserved higher spin charges. We find further evidence for the existence of the additional mapping class group elements by interpreting the bulk gauge theory geometrically and employing the formalism developed by Gomis et al. in the nineties. This formalism introduces additional (auxiliary) boundary times so that each conserved charge generates translations in those new directions. This allows us to find an explicit description for the $\textsf{PSL}(3,\mathbb{R})$ Schwarzian theory for the disk and trumpet and view the additional mapping class group elements as ordinary Dehn twists, but in higher dimensions.