论文标题
狄拉克(Dirac)配对,单一形式对称性和塞伯格(Seiberg)的几何形状
Dirac pairings, one-form symmetries and Seiberg-Witten geometries
论文作者
论文摘要
量子场理论的库仑阶段(当存在)阐明了其线路运算符和一式对称性的分析。对于4D $ \ MATHCAL {n} = 2 $字段理论,此阶段的低能物理是在Coulomb Vacua Moduli空间的特殊Kähler几何形状中编码的。我们阐明了如何在特殊的Kähler结构中编码允许的线运算符费用和单一形式对称性的信息。我们指出,带电状态的晶格与在模量空间上纤维的Abelian品种的同源晶格之间的重要差异,该空间原理是在主要两极化的情况下,自然而然地识别出相互局部线路运算符的晶格。该观察结果阐明了$ \ Mathcal {n} = 4 $理论的全局形式的不同S偶性轨道是几何编码的。
The Coulomb phase of a quantum field theory, when present, illuminates the analysis of its line operators and one-form symmetries. For 4d $\mathcal{N}=2$ field theories the low energy physics of this phase is encoded in the special Kähler geometry of the moduli space of Coulomb vacua. We clarify how the information on the allowed line operator charges and one-form symmetries is encoded in the special Kähler structure. We point out the important difference between the lattice of charged states and the homology lattice of the abelian variety fibered over the moduli space, which, when principally polarized, is naturally identified with a choice of the lattice of mutually local line operators. This observation illuminates how the distinct S-duality orbits of global forms of $\mathcal{N}=4$ theories are encoded geometrically.