论文标题
非封锁者的遗传分解连续性与凯利的财产
Nonblockers for hereditarily decomposable continua with the property of Kelley
论文作者
论文摘要
给定一个continuum $ x $,令$ \ m rathcal {nb}(\ mathcal {f} _1(x))$是$ \ mathcal {f} _1 _1(x)$的非块的超空间。在本文中,我们表明,如果$ x $遗传与Kelley的属性可以分解,以至于$ \ Mathcal {nb}(\ Mathcal {f} _1(x))$是连续体,那么$ x $是一个简单的封闭曲线。因此,我们将简单的封闭曲线描述为具有kelley $ x $的属性的独特遗传性分解连续性,以使其超空间$ \ MATHCAL {nb}(\ Mathcal {f} _1(x))$是一个连续性。
Given a continuum $X$, let $\mathcal{NB} (\mathcal{F}_1(X))$ be the hyperspace of nonblockers of $\mathcal{F}_1(X)$. In this paper, we show that if $X$ is hereditarily decomposable with the property of Kelley such that $\mathcal{NB} (\mathcal{F}_1(X))$ is a continuum, then $X$ is a simple closed curve. Thus, we characterize the simple closed curve as the unique hereditarily decomposable continuum with the property of Kelley $X$ such that its hyperspace $\mathcal{NB} (\mathcal{F}_1(X))$ is a continuum.