论文标题
比较两回能供应链中的深钢筋学习算法
Comparing Deep Reinforcement Learning Algorithms in Two-Echelon Supply Chains
论文作者
论文摘要
在这项研究中,我们分析和比较了最先进的深入强化学习算法,以解决供应链库存管理问题。这个复杂的顺序决策问题包括确定在给定时间范围内在不同仓库中生产和运输的最佳产品的最佳量。特别是,我们介绍了具有随机和季节性需求的两回波供应链环境的数学表述,这允许管理任意数量的仓库和产品类型。通过大量的数值实验,我们比较了各种供应链结构,拓扑,需求,能力和成本下不同深层增强学习算法的性能。实验计划的结果表明,深度强化学习算法的表现优于传统库存管理策略,例如静态(S,Q) - 政策。此外,这项研究提供了对开源软件库的设计和开发的详细见解,该库提供了一个可自定义的环境,用于使用广泛的数据驱动方法来解决供应链库存管理问题。
In this study, we analyze and compare the performance of state-of-the-art deep reinforcement learning algorithms for solving the supply chain inventory management problem. This complex sequential decision-making problem consists of determining the optimal quantity of products to be produced and shipped across different warehouses over a given time horizon. In particular, we present a mathematical formulation of a two-echelon supply chain environment with stochastic and seasonal demand, which allows managing an arbitrary number of warehouses and product types. Through a rich set of numerical experiments, we compare the performance of different deep reinforcement learning algorithms under various supply chain structures, topologies, demands, capacities, and costs. The results of the experimental plan indicate that deep reinforcement learning algorithms outperform traditional inventory management strategies, such as the static (s, Q)-policy. Furthermore, this study provides detailed insight into the design and development of an open-source software library that provides a customizable environment for solving the supply chain inventory management problem using a wide range of data-driven approaches.