论文标题
Sintel:一个机器学习框架,可从信号中提取见解
Sintel: A Machine Learning Framework to Extract Insights from Signals
论文作者
论文摘要
时间序列数据中对异常的检测是许多监视应用程序的关键任务。现有系统通常无法涵盖端到端检测过程,无法促进对各种异常检测方法的比较分析,或者将人类知识纳入完善产出。这排除了不是ML专家的从业者在现实世界中使用的当前方法。在本文中,我们介绍了Sintel,这是一个用于端到端时间序列任务(例如异常检测)的机器学习框架。该框架使用最先进的方法来支持异常检测过程的所有步骤。 Sintel记录了整个异常检测过程,随着时间的推移提供了详细的异常文档。它使用户能够通过交互式可视化工具分析信号,比较方法并调查异常,他们可以在其中注释,修改,创建和删除事件。使用这些注释,该框架利用人类知识来改善异常检测管道。我们通过在三个公共时间序列数据集上的一系列实验以及一个涉及涉及正常分析任务的航天器专家的现实情况下,通过一系列实验证明了Sintel的可用性,效率和有效性。 Sintel的框架,代码和数据集在https://github.com/sintel-dev/上进行开源。
The detection of anomalies in time series data is a critical task with many monitoring applications. Existing systems often fail to encompass an end-to-end detection process, to facilitate comparative analysis of various anomaly detection methods, or to incorporate human knowledge to refine output. This precludes current methods from being used in real-world settings by practitioners who are not ML experts. In this paper, we introduce Sintel, a machine learning framework for end-to-end time series tasks such as anomaly detection. The framework uses state-of-the-art approaches to support all steps of the anomaly detection process. Sintel logs the entire anomaly detection journey, providing detailed documentation of anomalies over time. It enables users to analyze signals, compare methods, and investigate anomalies through an interactive visualization tool, where they can annotate, modify, create, and remove events. Using these annotations, the framework leverages human knowledge to improve the anomaly detection pipeline. We demonstrate the usability, efficiency, and effectiveness of Sintel through a series of experiments on three public time series datasets, as well as one real-world use case involving spacecraft experts tasked with anomaly analysis tasks. Sintel's framework, code, and datasets are open-sourced at https://github.com/sintel-dev/.