论文标题

Autofield:深度推荐系统中的自动化功能选择

AutoField: Automating Feature Selection in Deep Recommender Systems

论文作者

Wang, Yejing, Zhao, Xiangyu, Xu, Tong, Wu, Xian

论文摘要

功能质量对建议性能有影响。因此,功能选择是开发基于深度学习的建议系统的关键过程。但是,大多数现有的深度推荐系统都专注于设计复杂的神经网络,同时忽略了功能选择过程。通常,它们只是将所有可能的功能馈送到他们提出的深层建筑中,或者由人类专家手动选择重要功能。前者会导致非平凡的嵌入参数和额外的推理时间,而后者则需要大量的专业知识和人工努力。在这项工作中,我们提出了一个可以自动选择基本特征字段的自动框架。具体而言,我们首先设计一个可区分的控制器网络,该网络能够自动调整选择特定特征字段的概率。然后,仅利用选定的特征字段来重新训练深度建议模型。在三个基准数据集上进行的广泛实验证明了我们框架的有效性。我们进行进一步的实验以研究其特性,包括可传递性,关键成分和参数灵敏度。

Feature quality has an impactful effect on recommendation performance. Thereby, feature selection is a critical process in developing deep learning-based recommender systems. Most existing deep recommender systems, however, focus on designing sophisticated neural networks, while neglecting the feature selection process. Typically, they just feed all possible features into their proposed deep architectures, or select important features manually by human experts. The former leads to non-trivial embedding parameters and extra inference time, while the latter requires plenty of expert knowledge and human labor effort. In this work, we propose an AutoML framework that can adaptively select the essential feature fields in an automatic manner. Specifically, we first design a differentiable controller network, which is capable of automatically adjusting the probability of selecting a particular feature field; then, only selected feature fields are utilized to retrain the deep recommendation model. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our framework. We conduct further experiments to investigate its properties, including the transferability, key components, and parameter sensitivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源