论文标题

通过动态特征归因学习思维理论

Learning Theory of Mind via Dynamic Traits Attribution

论文作者

Nguyen, Dung, Nguyen, Phuoc, Le, Hung, Do, Kien, Venkatesh, Svetha, Tran, Truyen

论文摘要

心理理论的机器学习(汤姆)对于建立与人类和其他代理人共同生活的社会代理人至关重要。这种能力一旦获得,将帮助机器从观察到的情境行动轨迹中推断出他人的心理状态,从而实现对目标,意图,行动和后继表示的未来预测。但是,这种预测的基本机制尚不清楚。受到人类经常推断他人的性格特征的观察的启发,然后使用它来解释行为,我们提出了一种新的神经tom体系结构,该建筑学会从过去的轨迹中产生一个参与者的潜在特征向量。然后,该特征向量通过预测神经网络中的“快速权重”方案进行了多样化的预测机制,该方案读取当前上下文并预测行为。我们从经验上表明,快速权重提供了良好的感应偏见,以模拟代理的性格特征,从而提高了思维能力。在间接评估虚假信号的理解时,新的TOM模型可以更有效地帮助行为。

Machine learning of Theory of Mind (ToM) is essential to build social agents that co-live with humans and other agents. This capacity, once acquired, will help machines infer the mental states of others from observed contextual action trajectories, enabling future prediction of goals, intention, actions and successor representations. The underlying mechanism for such a prediction remains unclear, however. Inspired by the observation that humans often infer the character traits of others, then use it to explain behaviour, we propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories. This trait vector then multiplicatively modulates the prediction mechanism via a `fast weights' scheme in the prediction neural network, which reads the current context and predicts the behaviour. We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability. On the indirect assessment of false-belief understanding, the new ToM model enables more efficient helping behaviours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源