论文标题

在Brumer-Stark的猜想和改进上

On the Brumer-Stark Conjecture and Refinements

论文作者

Dasgupta, Samit, Kakde, Mahesh

论文摘要

我们陈述了布鲁默star的猜想,并从两个角度激励了它。斯塔克(Stark)的观点是为了概括$ s = 1 $(等效地,$ s = 0 $)的Dedekind Zeta函数的前学期的经典dirichlet class号公式。 Brumer的观点是通过推广Stickelberger关于高斯总和的分解和歼灭循环组领域的歼灭的作品而产生的。这些观点是由泰特(Tate)合成的。 该猜想认为完全真实的领域$ F $和有限的Abelian CM扩展名$ H/F $。它指出,$ h $中存在$ p $ - 单位,其在$ p $以上的地方的估值与扩展名$ h/f $ at $ s = 0 $的$ l $ functions的特殊值有关。本质上,猜想指出,与$ h/f $相关的Stickelberger元素会歼灭$ h $的(适当平滑的)类组。这个猜想已由许多作者在多个方向上进行了完善。 我们通过将结果指向这些各种猜想并总结了证据来结束。特别是,我们证明了鲁宾的更高等级版本和库里哈拉的猜想,所有这些都“远离2”。我们还证明了Gross的猜想以及Brumer-Stark单位的确切$ P $ ADIC分析公式。证明涉及的关键技术是Ribet的方法。我们展示了希尔伯特模块化艾森斯坦系列和尖峰形式之间的一致性,并使用相关的Galois表示来构建Galois同胞类别。这些共同体类别是用ritter-weiss模块来解释的,可以从该模块中推断出班级的结果。

We state the Brumer-Stark conjecture and motivate it from two perspectives. Stark's perspective arose in his attempts to generalize the classical Dirichlet class number formula for the leading term of the Dedekind zeta function at $s=1$ (equivalently, $s=0$). Brumer's perspective arose by generalizing Stickelberger's work regarding the factorization of Gauss sums and the annihilation of class groups of cyclotomic fields. These viewpoints were synthesized by Tate, who stated the Brumer-Stark conjecture in its current form. The conjecture considers a totally real field $F$ and a finite abelian CM extension $H/F$. It states the existence of $p$-units in $H$ whose valuations at places above $p$ are related to the special values of the $L$-functions of the extension $H/F$ at $s=0$. Essentially equivalently, the conjecture states that a Stickelberger element associated to $H/F$ annihilates the (appropriately smoothed) class group of $H$. This conjecture has been refined by many authors in multiple directions. We conclude by stating our results toward these various conjectures and summarizing the proofs. In particular, we prove the Brumer-Stark conjecture, Rubin's higher rank version, and Kurihara's conjecture, all "away from 2." We also prove strong partial results toward Gross's conjecture and the exact $p$-adic analytic formula for Brumer-Stark units. The key technique involved in the proofs is Ribet's method. We demonstrate congruences between Hilbert modular Eisenstein series and cusp forms, and use the associated Galois representations to construct Galois cohomology classes. These cohomology classes are interpreted in terms of Ritter-Weiss modules, from which results on class groups may be deduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源