论文标题

属的量子Lefschetz属性两个稳定的准杂不变属

Quantum Lefschetz property for genus two stable quasimap invariants

论文作者

Lee, Sanghyeon, Li, Mu-Lin, Oh, Jeongseok

论文摘要

通过稳定准胶质到n维射击空间的模量空间中的减少组件,我们的意思是闭合域曲线平滑的基因座的闭合。与稳定地图的模量空间一样,我们证明还原成分在2属中是平滑的,程度大或等于3。 然后,我们证明了稳定的准绝模量的虚拟基本周期,即在第2属的投影空间中X的完整相交X,该度数大于或等于3的程度,根据X型X。X型属模量的较低属空间的简化成分的基本周期明确表示。

By the reduced component in a moduli space of stable quasimaps to n-dimensional projective space we mean the closure of the locus in which the domain curves are smooth. As in the moduli space of stable maps, we prove the reduced component is smooth in genus 2, degree greater or equal to 3. Then we prove the virtual fundamental cycle of the moduli space of stable quasimaps to a complete intersection X in the projective space of genus 2, degree greater or equal to 3 is explicitly expressed in terms of the fundamental cycle of the reduced component of the projective space and virtual cycles of lower genus moduli spaces of X.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源