论文标题
关于bredon的合理配置空间
On the Rational Bredon Cohomology of Equivariant Configuration Spaces
论文作者
论文摘要
布雷顿的共同体学是一种共同体学理论,适用于配备了小组行动的拓扑空间。对于任何G组的G组,鉴于真实的线性表示V,V的配置空间具有天然的对角线G-Action。在论文中,我们研究了该组在配置空间上的作用,并给出了配置空间的同源性布雷登系数系统的分解,并将其应用于小型nonabelian Group G.
Bredon cohomology is a cohomology theory that applies to topological spaces equipped with the group actions. For any group G, given a real linear representation V , the configuration space of V has a natural diagonal G-action. In the paper we study this group action on the configuration space and give a decomposition of the homology Bredon coefficient system of the configuration space and apply this to compute rational Bredon cohomology of the configuration space for small nonabelian group G.