论文标题
$ u = \ infty $,$ d = \ infty $ hubbard型号的极其相关的费米液体理论与$ {\ cal o}(λ^3)$
Extremely Correlated Fermi Liquid theory for $U=\infty$, $d=\infty$ Hubbard model to ${\cal O}(λ^3)$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present the ${\cal O}(λ^3)$ results from the $λ$ expansion in the extremely correlated Fermi liquid theory applied to the infinite-dimensional $t$-$J$ model (with $J=0$), and compare the results with the earlier ${\cal O}(λ^2)$ results as well as the results from the dynamical mean field theory. We focus attention on the $T$ dependence of the resistivity $ρ(T)$, the Dyson self energy, and the quasiparticle weight $Z$ at various densities. The comparison shows that all the methods display quadratic in T resistivity followed by a quasi-linear in T resistivity characterizing a strange metal, and gives an estimate of the different scales of these variables relative to the exact results.