论文标题

SO2SAT POP-策划的基准数据集用于大陆规模上空间的人口估算

So2Sat POP -- A Curated Benchmark Data Set for Population Estimation from Space on a Continental Scale

论文作者

Doda, Sugandha, Wang, Yuanyuan, Kahl, Matthias, Hoffmann, Eike Jens, Ouan, Kim, Taubenböck, Hannes, Zhu, Xiao Xiang

论文摘要

获得动态的人群分配是许多决策过程,例如城市规划,灾难管理以及最重要的是帮助政府更好地分配社会技术供应。为了使这些目标的吸引力,良好的人口数据至关重要。通过人口普查收集人口数据的传统方法是昂贵且乏味的。近年来,已经开发了统计和机器学习方法来估计人口分布。大多数方法都使用小规模开发或尚未公开开发的数据集。因此,新方法的开发和评估变得具有挑战性。我们通过为98个欧洲城市的人口估计提供全面的数据集来填补这一空白。数据集包括数字高程模型,当地气候区域,土地使用比例,夜间灯与多光谱Sentinel-2图像结合使用以及开放式街道地图计划中的数据。我们预计,这将是研究社区的宝贵补充,用于发展人口估计领域的复杂方法。

Obtaining a dynamic population distribution is key to many decision-making processes such as urban planning, disaster management and most importantly helping the government to better allocate socio-technical supply. For the aspiration of these objectives, good population data is essential. The traditional method of collecting population data through the census is expensive and tedious. In recent years, statistical and machine learning methods have been developed to estimate population distribution. Most of the methods use data sets that are either developed on a small scale or not publicly available yet. Thus, the development and evaluation of new methods become challenging. We fill this gap by providing a comprehensive data set for population estimation in 98 European cities. The data set comprises a digital elevation model, local climate zone, land use proportions, nighttime lights in combination with multi-spectral Sentinel-2 imagery, and data from the Open Street Map initiative. We anticipate that it would be a valuable addition to the research community for the development of sophisticated approaches in the field of population estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源