论文标题
Stonet:神经运动驱动的时空网络
STONet: A Neural-Operator-Driven Spatio-temporal Network
论文作者
论文摘要
基于图形的时空神经网络有效地模拟了离散点之间的空间依赖性,这要归功于图形神经网络的出色表现力,从非结构化的网格中进行了不规则采样。但是,这些模型通常是空间转换的 - 仅适用于在模型中提供的离散空间节点的信号,但无法概括以零射击“看不见”的空间点。相比之下,对于连续空间上的预测任务,例如地球表面的温度预测,\ textIt {空间感应性}属性使该模型可以概括为空间域中的任何点,从而证明了模型的能力,可以学习系统的基本机制或物理学定律,而不是简单地符合信号。此外,在时间域中,\ textit {不规则采样}时间序列,例如具有缺失值的数据敦促模型在时间上是连续的。在这两个问题的激励下,我们提出了一个基于PDE的神经操作员的时空框架,该框架学习了管理空间连续物理量动态的基本机制。实验表明,我们模型在预测空间上的物理量上的提高性能,以及其对看不见的空间点和处理时间无关紧要的数据的能力的卓越概括。
Graph-based spatio-temporal neural networks are effective to model the spatial dependency among discrete points sampled irregularly from unstructured grids, thanks to the great expressiveness of graph neural networks. However, these models are usually spatially-transductive -- only fitting the signals for discrete spatial nodes fed in models but unable to generalize to `unseen' spatial points with zero-shot. In comparison, for forecasting tasks on continuous space such as temperature prediction on the earth's surface, the \textit{spatially-inductive} property allows the model to generalize to any point in the spatial domain, demonstrating models' ability to learn the underlying mechanisms or physics laws of the systems, rather than simply fit the signals. Besides, in temporal domains, \textit{irregularly-sampled} time series, e.g. data with missing values, urge models to be temporally-continuous. Motivated by the two issues, we propose a spatio-temporal framework based on neural operators for PDEs, which learn the underlying mechanisms governing the dynamics of spatially-continuous physical quantities. Experiments show our model's improved performance on forecasting spatially-continuous physic quantities, and its superior generalization to unseen spatial points and ability to handle temporally-irregular data.