论文标题

使用实体检索的抽象性摘要的事实错误纠正

Factual Error Correction for Abstractive Summaries Using Entity Retrieval

论文作者

Lee, Hwanhee, Park, Cheoneum, Yoon, Seunghyun, Bui, Trung, Dernoncourt, Franck, Kim, Juae, Jung, Kyomin

论文摘要

尽管从大规模数据集和预训练的语言模型中利用了抽象性摘要系统的最新进展,但摘要的事实正确性仍然不足。减轻此问题的一系列试验是包括一个可以在摘要中检测和纠正事实错误的后编辑过程。在构建这样的后编辑系统时,强烈要求1)该过程具有很高的成功率和可解释性,而2)运行时间很快。先前的方法着重于使用自回归模型的摘要的再生,这些模型缺乏解释性且需要高度计算资源。在本文中,我们根据实体检索后编辑过程提出了一个有效的事实错误校正系统RFEC。 RFEC首先通过将句子与目标摘要进行比较,从原始文档中检索证据句子。这种方法大大减少了用于分析系统的文本长度。接下来,RFEC通过考虑证据判决并将错误的实体用准确的实体替换为证据判决中的错误实体,从而检测到摘要中的实体级别错误。实验结果表明,我们提出的误差校正系统比基线方法比以更快的速度纠正事实错误的基线方法更具竞争力。

Despite the recent advancements in abstractive summarization systems leveraged from large-scale datasets and pre-trained language models, the factual correctness of the summary is still insufficient. One line of trials to mitigate this problem is to include a post-editing process that can detect and correct factual errors in the summary. In building such a post-editing system, it is strongly required that 1) the process has a high success rate and interpretability and 2) has a fast running time. Previous approaches focus on regeneration of the summary using the autoregressive models, which lack interpretability and require high computing resources. In this paper, we propose an efficient factual error correction system RFEC based on entities retrieval post-editing process. RFEC first retrieves the evidence sentences from the original document by comparing the sentences with the target summary. This approach greatly reduces the length of text for a system to analyze. Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences. Experimental results show that our proposed error correction system shows more competitive performance than baseline methods in correcting the factual errors with a much faster speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源