论文标题
双层石墨烯中光诱导的拉曼力的巨型剪切位移
Giant Shear Displacement by Light-Induced Raman Force in Bilayer Graphene
论文作者
论文摘要
在范德华分层材料中对剪切声子的相干激发是一种无损的机制,可以微调系统的电子状态。我们为位移性拉曼力量开发了一种示意力理论,并将其应用于剪切声子的动力学。我们在双层石墨烯中获得了$ {\ cal f} \ sim 10 {\ rm nn/nm^2} $的整流拉曼力量密度,从而导致巨大的剪切位移$ q_0 \ sim 50 $ pm for Intense Indense Indense -rared激光器。我们讨论循环和线性位移拉曼力量。我们表明,激光频率和极化可以有效地调整不同的电子掺杂,温度和散射速率的$ q_0 $。我们揭示有限$ q_0 $在光发射光谱可以探测的低能分散体中引起了狄拉克交叉对。我们的发现提供了一种系统的途径,可以通过激光照射在分层材料的异质结构中模拟和分析对均匀顺序的相干操纵。
Coherent excitation of shear phonons in van der Waals layered materials is a non-destructive mechanism to fine-tune the electronic state of the system. We develop a diagrammatic theory for the displacive Raman force and apply it to the shear phonon's dynamics. We obtain a rectified Raman force density in bilayer graphene of the order of ${\cal F}\sim 10{\rm nN/nm^2}$ leading to a giant shear displacement $Q_0 \sim 50$pm for an intense infrared laser. We discuss both circular and linear displacive Raman forces. We show that the laser frequency and polarization can effectively tune $Q_0$ in different electronic doping, temperature, and scattering rates. We reveal that the finite $Q_0$ induces a Dirac crossing pair in the low-energy dispersion that photoemission spectroscopy can probe. Our finding provides a systematic pathway to simulate and analyze the coherent manipulation of staking order in the heterostructures of layered materials by laser irradiation.