论文标题

$ p(x)的有效数值计算 - $ laplace方程2D

Effective numerical computation of $p(x)-$Laplace equations in 2D

论文作者

Aragon, Adriana, Bonder, Julian Fernandez, Rubio, Diana

论文摘要

在本文中,我们实施了一种计算非线性椭圆问题的方法,该方法由$ p(x) - $ laplacian运算符驱动的非标准增长。我们的实现基于{\ em分解 - 协调}方法,该方法允许我们通过迭代过程在每个步骤中求解线性微分方程和非线性代数方程。我们的代码在{\ sc matlab}中实现,并在两个维度上实现,从计算的角度来看,事实证明非常有效。

In this article we implement a method for the computation of a nonlinear elliptic problem with nonstandard growth driven by the $p(x)-$Laplacian operator. Our implementation is based in the {\em decomposition--coordination} method that allows us, via an iterative process, to solve in each step a linear differential equation and a nonlinear algebraic equation. Our code is implemented in {\sc MatLab} in 2 dimensions and turns out to be extremely efficient from the computational point of view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源