论文标题

自主驾驶中的异常检测:一项调查

Anomaly Detection in Autonomous Driving: A Survey

论文作者

Bogdoll, Daniel, Nitsche, Maximilian, Zöllner, J. Marius

论文摘要

如今,我们的道路上有自动驾驶汽车的未来取得了巨大的进步。尽管对自动驾驶汽车的感知在封闭式条件下表现良好,但他们仍然很难处理意外情况。这项调查提供了基于相机,激光雷达,雷达,多模式和抽象对象级别数据的异常检测技术的广泛概述。我们提供系统化,包括检测方法,角案例级别,在线应用程序的能力以及进一步的属性。我们概述了最新的,并指出了当前的研究差距。

Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源