论文标题
部分可观测时空混沌系统的无模型预测
A Hierarchical Terminal Recognition Approach based on Network Traffic Analysis
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recognizing the type of connected devices to a network helps to perform security policies. In smart grids, identifying massive number of grid metering terminals based on network traffic analysis is almost blank and existing research has not proposed a targeted end-to-end model to solve the flow classification problem. Therefore, we proposed a hierarchical terminal recognition approach that applies the details of grid data. We have formed a two-level model structure by segmenting the grid data, which uses the statistical characteristics of network traffic and the specific behavior characteristics of grid metering terminals. Moreover, through the selection and reconstruction of features, we combine three algorithms to achieve accurate identification of terminal types that transmit network traffic. We conduct extensive experiments on a real dataset containing three types of grid metering terminals, and the results show that our research has improved performance compared to common recognition models. The combination of an autoencoder, K-Means and GradientBoost algorithm achieved the best recognition rate with F1 value of 98.3%.