论文标题
评估文本简化中的事实
Evaluating Factuality in Text Simplification
论文作者
论文摘要
自动化简化模型旨在使输入文本更具可读性。这样的方法有可能使更广泛的受众访问的复杂信息,例如,提供对近期医学文献的访问,否则这些文献对于外行读者来说可能是无法透露的。但是,这样的模型有可能将错误引入自动简化文本中,例如,通过插入不支持相应的原始文本或省略密钥信息的语句。在许多情况下,提供更可读但不准确的文本版本可能比没有提供此类访问权限要差。在摘要模型的背景下,事实准确性的问题(及其缺乏)受到了更高的关注,但是尚未研究自动简化文本的事实。我们介绍了错误的分类法,用于分析从标准简化数据集和最先进的模型输出中绘制的参考文献。我们发现,错误通常出现在现有评估指标并未捕获的两者中,这激发了研究的需求,以确保自动简化模型的事实准确性。
Automated simplification models aim to make input texts more readable. Such methods have the potential to make complex information accessible to a wider audience, e.g., providing access to recent medical literature which might otherwise be impenetrable for a lay reader. However, such models risk introducing errors into automatically simplified texts, for instance by inserting statements unsupported by the corresponding original text, or by omitting key information. Providing more readable but inaccurate versions of texts may in many cases be worse than providing no such access at all. The problem of factual accuracy (and the lack thereof) has received heightened attention in the context of summarization models, but the factuality of automatically simplified texts has not been investigated. We introduce a taxonomy of errors that we use to analyze both references drawn from standard simplification datasets and state-of-the-art model outputs. We find that errors often appear in both that are not captured by existing evaluation metrics, motivating a need for research into ensuring the factual accuracy of automated simplification models.