论文标题

离散最小能量路径的收敛性

Convergence of the Discrete Minimum Energy Path

论文作者

Liu, Xuanyu, Chen, Huajie, Ortner, Christoph

论文摘要

最小能量路径(MEP)描述了反应的机理,并且沿路径的能屏障可以用于计算热系统中的反应速率。轻度弹性带(NEB)方法是数值计算MEP的最常用方案之一。它通过一组离散的配置图像近似MEP,其中离散化大小决定了模拟的计算成本和准确性。在本文中,我们认为离散的MEP是NEB方法的固定状态,并且证明相对于图像数量,离散MEP的最佳收敛速率。对几个原始典型模型系统的过渡进行了数值模拟以支持该理论。

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源