论文标题

通过矩阵缩放查找霍尔阻滞剂

Finding Hall blockers by matrix scaling

论文作者

Hayashi, Koyo, Hirai, Hiroshi, Sakabe, Keiya

论文摘要

对于给定的非负矩阵$ a =(a_ {ij})$,矩阵缩放问题询问是否可以将$ a $缩放到双向随机矩阵$ d_1ad_2 $ for某些阳性对角线矩阵$ d_1,d_2 $。美元通过该算法,$ a $在且仅当与$ a $相关的两部分图具有完美匹配时,将限制为限制的双随机矩阵收敛。该属性可以决定在给定的两部分图$ g $中存在完美匹配,该属性与$ 0,1 $ -Matrix $ a_g $ .linial,Samorodnitsky和Wigderson一起标识,并且Wigderson显示$ o(n^2 \ log n)$ iTerations $ a_g $ iTerations $ a_g $ iTerations $ a_g $ iTeration $ a_g $ ncluct $ a_g $ decluct $ a_g $ ncluct $ a_g $ n $ g $ ncution $ g $是否具有完美匹配的匹配。这里$ n $是$ g $的颜色类别之一中的顶点。在本文中,我们显示了此结果的扩展:如果$ g $没有完美的匹配,则多项式的sindhorn迭代数字标识了霍尔阻止器 - 一个顶点子集$ x $,neighl enken nekinbors $γ(x)$ with $ | x | > |γ(x)| $。具体来说,我们表明$ o(n^2 \ log n)$迭代可以识别一个霍尔阻滞剂,并且进一步的多项式迭代还可以识别所有参数厅阻滞剂$ x $的最大化$(1-λ)| x | - λ|γ(x)| $ for $λ\在[0,1] $中。前者的结果基于对sindhorn算法的解释,作为对几何编程的交替最小化。后者是一种解释为KL-Divergence的交替最小化(Csiszár和Tusnády1984,Gietl和Reffel 2013)及其对非估算矩阵的限制行为(AAS 2014)。我们还将沉没的限制与参数网络流,多咪要的主要分区以及双分部分图的Dulmage-Mendelsohn分解。

For a given nonnegative matrix $A=(A_{ij})$, the matrix scaling problem asks whether $A$ can be scaled to a doubly stochastic matrix $D_1AD_2$ for some positive diagonal matrices $D_1,D_2$.The Sinkhorn algorithm is a simple iterative algorithm, which repeats row-normalization $A_{ij} \leftarrow A_{ij}/\sum_{j}A_{ij}$ and column-normalization $A_{ij} \leftarrow A_{ij}/\sum_{i}A_{ij}$ alternatively. By this algorithm, $A$ converges to a doubly stochastic matrix in limit if and only if the bipartite graph associated with $A$ has a perfect matching. This property can decide the existence of a perfect matching in a given bipartite graph $G$, which is identified with the $0,1$-matrix $A_G$.Linial, Samorodnitsky, and Wigderson showed that $O(n^2 \log n)$ iterations for $A_G$ decide whether $G$ has a perfect matching. Here $n$ is the number of vertices in one of the color classes of $G$. In this paper, we show an extension of this result:If $G$ has no perfect matching, then a polynomial number of the Sinkhorn iterations identifies a Hall blocker -- a vertex subset $X$ having neighbors $Γ(X)$ with $|X| > |Γ(X)|$. Specifically, we show that $O(n^2 \log n)$ iterations can identify one Hall blocker, and that further polynomial iterations can also identify all parametric Hall blockers $X$ of maximizing $(1-λ) |X| - λ|Γ(X)|$ for $λ\in [0,1]$.The former result is based on an interpretation of the Sinkhorn algorithm as alternating minimization for geometric programming. The latter is on an interpretation as alternating minimization for KL-divergence (Csiszár and Tusnády 1984, Gietl and Reffel 2013) and its limiting behavior for a nonscalable matrix (Aas 2014). We also relate the Sinkhorn limit with parametric network flow, principal partition of polymatroids, and the Dulmage-Mendelsohn decomposition of a bipartite graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源