论文标题

用强有力的反馈最大程度地减少控制信贷分配的控制

Minimizing Control for Credit Assignment with Strong Feedback

论文作者

Meulemans, Alexander, Farinha, Matilde Tristany, Cervera, Maria R., Sacramento, João, Grewe, Benjamin F.

论文摘要

深度学习的成功引发了人们对大脑是否使用基于梯度的学习学习等级表示的兴趣。但是,目前在深层神经网络中基于梯度的信用分配的生物学上合理的方法需要无限的反馈信号,这在生物学上现实的嘈杂环境中是有问题的,并且与神经科学的实验证据不符,表明自上而下的反馈可以显着影响神经活动。在最近提出的一种信用分配方法的深度反馈控制(DFC)的基础上,我们结合了对神经活动的强烈反馈影响与基​​于梯度的学习,并表明这自然会导致对神经网络优化的新看法。重量更新逐渐最大程度地减少了将网络驱动到监督输出标签的控制器所需的反馈量逐渐最小化,而不是逐渐将网络权重转换为具有低输出损失的配置的配置。此外,我们表明,在DFC中使用强反馈可以同时学习和反馈连接,并在时空中完全本地学习规则。我们通过对标准计算机视觉基准测试的实验来补充理论结果,显示出对反向传播的竞争性能以及对噪声的鲁棒性。总体而言,我们的工作从根本上说明了学习最小化的学习观点,同时避开了生物学上不切实际的假设。

The success of deep learning ignited interest in whether the brain learns hierarchical representations using gradient-based learning. However, current biologically plausible methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals, which is problematic in biologically realistic noisy environments and at odds with experimental evidence in neuroscience showing that top-down feedback can significantly influence neural activity. Building upon deep feedback control (DFC), a recently proposed credit assignment method, we combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization. Instead of gradually changing the network weights towards configurations with low output loss, weight updates gradually minimize the amount of feedback required from a controller that drives the network to the supervised output label. Moreover, we show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using learning rules fully local in space and time. We complement our theoretical results with experiments on standard computer-vision benchmarks, showing competitive performance to backpropagation as well as robustness to noise. Overall, our work presents a fundamentally novel view of learning as control minimization, while sidestepping biologically unrealistic assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源