论文标题
符号ra变换和元代表
Symplectic Radon Transform and the Metaplectic Representation
论文作者
论文摘要
我们从符号群体的元容器表示及其对拉格朗日格拉曼尼亚人的作用的角度研究了象征性ra的变换。我们在多维量子系统的一般环境中给出了严格的证据。我们将逆伦转换解释为Wigner分布的“界限过程”。这项工作通过提供完整的证据来完成先前的注释。
We study the symplectic Radon transform from the point of view of the metaplectic representation of the symplectic group and its action on the Lagrangian Grassmannian. We give rigorous proofs in the general setting of multi-dimensional quantum systems. We interpret the inverse Radon transform as a "demarginalization process" for the Wigner distribution. This work completes, by giving complete proofs, a previous Note.