论文标题

在机器人事物的互联网上,联合学习基于视觉的障碍

Federated Learning for Vision-based Obstacle Avoidance in the Internet of Robotic Things

论文作者

Yu, Xianjia, Queralta, Jorge Peña, Westerlund, Tomi

论文摘要

深度学习方法已彻底改变了移动机器人技术,从高级感知模型,以增强情境意识到通过强化学习的新颖控制方法。本文探讨了联合学习对移动机器人的分布式系统的潜力,该系统可以在机器人事物上进行协作。为了证明这种方法的有效性,我们在不同的室内环境中部署了车轮机器人。我们分析了联合学习方法的性能,并将其与先验的汇总数据进行比较。我们展示了跨异构环境的协作学习的好处,以及模拟知识转移的潜力。我们的结果表明,除了通过保持计算的固有保护性质外,FL和SIM真实传输对基于视觉的导航的显着性能优势。据我们所知,这是利用FL来用于基于视觉导航的第一项工作,该导航还测试了实际设置。

Deep learning methods have revolutionized mobile robotics, from advanced perception models for an enhanced situational awareness to novel control approaches through reinforcement learning. This paper explores the potential of federated learning for distributed systems of mobile robots enabling collaboration on the Internet of Robotic Things. To demonstrate the effectiveness of such an approach, we deploy wheeled robots in different indoor environments. We analyze the performance of a federated learning approach and compare it to a traditional centralized training process with a priori aggregated data. We show the benefits of collaborative learning across heterogeneous environments and the potential for sim-to-real knowledge transfer. Our results demonstrate significant performance benefits of FL and sim-to-real transfer for vision-based navigation, in addition to the inherent privacy-preserving nature of FL by keeping computation at the edge. This is, to the best of our knowledge, the first work to leverage FL for vision-based navigation that also tests results in real-world settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源