论文标题

体积积分和流体动力方程的解决方案,分析复合纳米结构的电磁散射

Solution of Volume Integral and Hydrodynamic Equations to Analyze Electromagnetic Scattering from Composite Nanostructures

论文作者

Uulu, Doolos Aibek, Chen, Rui, Chen, Liang, Li, Ping, Bagci, Hakan

论文摘要

求解体积积分和流体动力方程的耦合系统可以分析来自金属和介电部件组成的纳米结构的电磁散射。在金属部分中,流体动力方程将自由电子极化电流与电通量相关联,并有效地“更新”了本构之间的关系,以实现非局部性建模。在金属和介电部件中,体积积分方程将电通量和游离电子极化电流与散射的电场联系起来。使用Schaubert-Wilton-Glisson基函数扩展了未知的电通量和游离电子极化电流。将这些扩展插入体积积分和流体动力方程的耦合系统中,并使用Galerkin测试产生未知膨胀系数中的矩阵系统。提出了有效的两级迭代求解器来解决此矩阵系统。该方法“反转”自由电子极化电流系数的离散流体动力方程,并取代了离散体积积分方程的结果。外迭代求解了此还原的矩阵系统,而内部迭代在外迭代的每一个迭代处都会扭转离散的流体动力方程。进行数值实验以证明所提出方法的准确性,效率和适用性。

A coupled system of volume integral and hydrodynamic equations is solved to analyze electromagnetic scattering from nanostructures consisting of metallic and dielectric parts. In the metallic part, the hydrodynamic equation relates the free electron polarization current to the electric flux and effectively "updates" the constitutive relation to enable the modeling of nonlocality. In the metallic and the dielectric parts, the volume integral equation relates the electric flux and the free electron polarization current to the scattered electric field. Unknown electric flux and free electron polarization current are expanded using Schaubert-Wilton-Glisson basis functions. Inserting these expansions into the coupled system of the volume integral and hydrodynamic equations and using Galerkin testing yield a matrix system in unknown expansion coefficients. An efficient two-level iterative solver is proposed to solve this matrix system. This approach "inverts" the discretized hydrodynamic equation for the coefficients of the free electron polarization current and substitutes the result in the discretized volume integral equation. Outer iterations solve this reduced matrix system while the inner iterations invert the discretized hydrodynamic equation at every iteration of the outer iterations. Numerical experiments are carried out to demonstrate the accuracy, the efficiency, and the applicability of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源