论文标题
动态实现的Beta模型,使用可靠实现的集成Beta估计器
Dynamic Realized Beta Models Using Robust Realized Integrated Beta Estimator
论文作者
论文摘要
本文为时变市场beta引入了一种统一的参数建模方法,该方法可以基于连续的时间串联回归模型来适应连续的时间扩散和离散时间系列模型,以更好地捕获市场Beta的动态演变。我们将其称为动态实现的Beta(博士博士)。我们首先使用受微观结构噪声污染的高频财务数据开发非参数实现的集成β估计器,该数据对风格化的特征(例如时间变化的β和微结构噪声的依赖性结构),并构建估算器的渐近性属性。然后,通过实现的集成β估计量,我们提出了一个准类过程,用于基于组合的高频数据和低频动态结构来估计模型参数。我们还为提出的估计量建立了渐近定理,并进行了模拟研究,以检查估计量有限样品的性能。标准普尔500指数和标准普尔500名总额的50个大型交易量库存的实证研究表明,拟议的博士Beta模型有效地说明了单个股票的市场beta动态,并更好地预测了未来的市场betas。
This paper introduces a unified parametric modeling approach for time-varying market betas that can accommodate continuous-time diffusion and discrete-time series models based on a continuous-time series regression model to better capture the dynamic evolution of market betas. We call this the dynamic realized beta (DR Beta). We first develop a non-parametric realized integrated beta estimator using high-frequency financial data contaminated by microstructure noises, which is robust to the stylized features, such as the time-varying beta and the dependence structure of microstructure noises, and construct the estimator's asymptotic properties. Then, with the robust realized integrated beta estimator, we propose a quasi-likelihood procedure for estimating the model parameters based on the combined high-frequency data and low frequency dynamic structure. We also establish asymptotic theorems for the proposed estimator and conduct a simulation study to check the performance of finite samples of the estimator. The empirical study with the S&P 500 index and the top 50 large trading volume stocks from the S&P 500 illustrates that the proposed DR Beta model effectively accounts for dynamics in the market beta of individual stocks and better predicts future market betas.