论文标题

环境模仿:使用模仿学习的数据驱动环境模型生成有效的CPS目标验证

Environment Imitation: Data-Driven Environment Model Generation Using Imitation Learning for Efficient CPS Goal Verification

论文作者

Shin, Yong-Jun, Shin, Donghwan, Bae, Doo-Hwan

论文摘要

网络物理系统(CPS)通过观察环境并确定动作的软件控制器连续与其物理环境进行交互。工程师可以通过分析其现场操作测试(FOT)日志来验证分析中的CP可以在多大程度上实现给定目标。但是,由于其成本和实践风险,重复许多局面以获得统计上显着的结果是一项挑战。为了应对这一挑战,基于仿真的验证可以是有效的CPS目标验证的一个很好的选择,但是它需要一个准确的虚拟环境模型,该模型可以替换在封闭循环中与CPS相互作用的真实环境。本文提出了一种新颖的数据驱动方法,该方法将自动从少量的FOT日志中生成虚拟环境模型。我们正式定义了环境模型生成问题,并使用模仿学习(IL)算法解决了它。此外,我们在进化CPS开发中提出了三个特定的方法。为了验证我们的方法,我们使用使用车道保存系统的简化自动驾驶汽车进行了案例研究。案例研究结果表明,我们的方法可以通过模拟以低成本生成准确的虚拟环境模型,以实现CPS目标验证。

Cyber-Physical Systems (CPS) continuously interact with their physical environments through software controllers that observe the environments and determine actions. Engineers can verify to what extent the CPS under analysis can achieve given goals by analyzing its Field Operational Test (FOT) logs. However, it is challenging to repeat many FOTs to obtain statistically significant results due to its cost and risk in practice. To address this challenge, simulation-based verification can be a good alternative for efficient CPS goal verification, but it requires an accurate virtual environment model that can replace the real environment that interacts with the CPS in a closed loop. This paper proposes a novel data-driven approach that automatically generates the virtual environment model from a small amount of FOT logs. We formally define the environment model generation problem and solve it using Imitation Learning (IL) algorithms. In addition, we propose three specific use cases of our approach in the evolutionary CPS development. To validate our approach, we conduct a case study using a simplified autonomous vehicle with a lane-keeping system. The case study results show that our approach can generate accurate virtual environment models for CPS goal verification at a low cost through simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源