论文标题

Ising和Yang-Lee的关键相关性来自Tensor RG的关键点

Critical correlations of Ising and Yang-Lee critical points from Tensor RG

论文作者

Basu, Sankhya, Oganesyan, Vadim

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We examine feasibility of accurate estimations of universal critical data using tensor renormalization group (TRG) algorithm introduced by Levin and Nave. Specifically, we compute critical exponents $γ, γ/ν, δ, η$ and amplitude ratio $A$ for the magnetic susceptibility from one- and two-point correlation functions for three critical points in two dimensions -- isotropic and anisotropic Ising models and the Yang-Lee critical point at finite imaginary magnetic field. While TRG performs quantitaviely well in all three cases already at smaller bond dimension, $D=16$, the latter two appear to show more rapid improvement in bond dimension, e.g. we are able to reproduce exactly known results to better than one percent at bond dimension $D=24$. We are able to reproduce exactly known values to better than 1 percent with modest effort of bond dimension 28. We comment on the relationship between these results and earlier results on conformal dimensions, fixed points of tensor RG, and also compare computational costs of tensor renormalization vs. conventional Monte-Carlo sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源