论文标题

用加强标签进行标签增强,以进行弱监督

Label Augmentation with Reinforced Labeling for Weak Supervision

论文作者

Solmaz, Gürkan, Cirillo, Flavio, Maresca, Fabio, Kumar, Anagha Gode Anil

论文摘要

弱监督(WS)是传统监督学习以满足地面真理需求的替代方法。数据编程是一种实用的WS方法,它允许使用标签功能(LFS)来编程标记数据示例,而不是手工标记每个数据点。但是,现有方法无法完全利用编码为LFS的域知识,尤其是当LFS的覆盖范围较低时。这是由于常见的数据编程管道在生成过程中忽略了使用数据功能。本文提出了一种新方法,称为增强标签(RL)。鉴于一个未标记的数据集和一组LFS,RL根据样本之间的相似性,将LFS的输出增加到LFS未涵盖的情况下。因此,RL可以导致更高的标签覆盖范围,以培训最终分类器。对几个领域的实验(YouTube评论,葡萄酒质量和天气预测的分类)导致了可观的收益。与最先进的数据编程方法相比,新方法可产生显着的性能提高,在F1分数中的准确性和+61分的高度提高。

Weak supervision (WS) is an alternative to the traditional supervised learning to address the need for ground truth. Data programming is a practical WS approach that allows programmatic labeling data samples using labeling functions (LFs) instead of hand-labeling each data point. However, the existing approach fails to fully exploit the domain knowledge encoded into LFs, especially when the LFs' coverage is low. This is due to the common data programming pipeline that neglects to utilize data features during the generative process. This paper proposes a new approach called reinforced labeling (RL). Given an unlabeled dataset and a set of LFs, RL augments the LFs' outputs to cases not covered by LFs based on similarities among samples. Thus, RL can lead to higher labeling coverage for training an end classifier. The experiments on several domains (classification of YouTube comments, wine quality, and weather prediction) result in considerable gains. The new approach produces significant performance improvement, leading up to +21 points in accuracy and +61 points in F1 scores compared to the state-of-the-art data programming approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源