论文标题
Lamost DR8低分辨率光谱的恒星大气参数的估计,使用20 $ \ leq $ snr $ <$ 30
Estimation of stellar atmospheric parameters from LAMOST DR8 low-resolution spectra with 20$\leq$SNR$<$30
论文作者
论文摘要
随着光谱信噪比(SNR)的降低,估计的恒星大气参数的准确性显然会降低,并且有大量此类观察结果,尤其是在SNR $ <$ 30的情况下。因此,提高这些光谱的参数估计性能是有帮助的,这项工作研究了($ t_ \ texttt {eff},\ log〜g $,[fe/h])lamost DR8低分辨率光谱的估计问题,其中20 $ \ \ leq $ snr $ <$ 30。我们提出了一种基于机器学习技术的数据驱动方法。首先,该方案通过最小绝对收缩和选择操作员(Lasso)从光谱中检测到出色的大气参数敏感特征,拒绝了无效的数据组件和无关的数据。其次,使用多层感知器(MLP)方法来估算Lasso特征的出色大气参数。最后,通过计算和分析其估计和参考的一致性(Apache Point Pointeratory Garactator Galactic Evolutions实验)高分辨率光谱来评估LASSO-MLP的性能。 Experiments show that the Mean Absolute Errors (MAE) of $T_\texttt{eff}, \log~g$, [Fe/H] are reduced from the LASP (137.6 K, 0.195 dex, 0.091 dex) to LASSO-MLP (84.32 K, 0.137 dex, 0.063 dex), which indicate evident improvements on stellar atmospheric parameter estimation.此外,这项工作估计了使用Lasso-MLP从Lamost DR8中使用20 $ \ leq $ snr $ <$ 30的1,162,760低分辨率光谱的出色大气参数,并发布了估算目录,学习的模型,实验代码,训练的模型,培训模型,训练数据和测试数据,以进行科学探索和藻类研究。
The accuracy of the estimated stellar atmospheric parameter decreases evidently with the decreasing of spectral signal-to-noise ratio (SNR) and there are a huge amount of this kind observations, especially in case of SNR$<$30. Therefore, it is helpful to improve the parameter estimation performance for these spectra and this work studied the ($T_\texttt{eff}, \log~g$, [Fe/H]) estimation problem for LAMOST DR8 low-resolution spectra with 20$\leq$SNR$<$30. We proposed a data-driven method based on machine learning techniques. Firstly, this scheme detected stellar atmospheric parameter-sensitive features from spectra by the Least Absolute Shrinkage and Selection Operator (LASSO), rejected ineffective data components and irrelevant data. Secondly, a Multi-layer Perceptron (MLP) method was used to estimate stellar atmospheric parameters from the LASSO features. Finally, the performance of the LASSO-MLP was evaluated by computing and analyzing the consistency between its estimation and the reference from the APOGEE (Apache Point Observatory Galactic Evolution Experiment) high-resolution spectra. Experiments show that the Mean Absolute Errors (MAE) of $T_\texttt{eff}, \log~g$, [Fe/H] are reduced from the LASP (137.6 K, 0.195 dex, 0.091 dex) to LASSO-MLP (84.32 K, 0.137 dex, 0.063 dex), which indicate evident improvements on stellar atmospheric parameter estimation. In addition, this work estimated the stellar atmospheric parameters for 1,162,760 low-resolution spectra with 20$\leq$SNR$<$30 from LAMOST DR8 using LASSO-MLP, and released the estimation catalog, learned model, experimental code, trained model, training data and test data for scientific exploration and algorithm study.