论文标题

一维毛毛虫方程的保守能量:低规律性案例

Conserved energies for the one dimensional Gross-Pitaevskii equation: low regularity case

论文作者

Koch, Herbert, Liao, Xian

论文摘要

我们为一维的pitaevskii方程构建了一个保守的能量家族,但是在低规律性的情况下(在\ cite {kl}中,我们在高规律性情况下构建了保守的能量)。这可以借助正规化程序以及对有限能源空间的拓扑结构的研究。研究了$ \ r/2π\ z $中的值的渐近(正则保守)相变。我们还在有限能量空间的通用覆盖空间上构造了一个保守的数量,即恢复归一化的动量$ h_1 $(请参见定理\ ref {thm:e1})。

We construct a family of conserved energies for the one dimensional Gross-Pitaevskii equation, but in the low regularity case (in \cite{KL} we have constructed conserved energies in the high regularity situation). This can be done thanks to regularization procedures and a study of the topological structure of the finite-energy space. The asymptotic (regularised conserved) phase change on the real line with values in $ \R/2π\Z$ is studied. We also construct a conserved quantity, the renormalized momentum $H_1$ (see Theorem \ref{thm:E1}), on the universal covering space of the finite-energy space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源