论文标题

最佳间歇性粒子过滤器

Optimal Intermittent Particle Filter

论文作者

Aspeel, Antoine, Gouverneur, Amaury, Jungers, Raphaël M., Macq, Benoit

论文摘要

解决了粒子过滤预算的最佳分配问题(在预期的平方误差中)的问题。我们提出了三个不同的最佳间歇过滤器,它们的最佳标准取决于决策时可用的信息。首先,随机程序过滤器,测量时间由确定是否应基于已经获得的测量值进行测量的策略给出。第二个称为离线滤波器,通过在任何测量采集之前解决组合优化程序立即确定所有测量时间。对于我们称之为在线过滤器的第三个,每次收到新的测量时,都会重新计算下一个测量时间,以将所有可用的信息考虑在内。我们证明,就预期的均方误差而言,随机程序过滤器的表现优于在线过滤器,在线过滤器本身优于离线过滤器。但是,这些过滤器通常是棘手的。因此,滤芯滤波器近似滤波器估计值。此外,使用蒙特 - 卡洛方法近似均方误差,并将不同的优化算法与近似求解组合程序进行比较(随机试验算法,贪婪的前进算法和向后算法,模拟的退火算法和一个遗传算法)。最后,在两个示例中说明了所提出的方法的性能:肿瘤运动模型和颗粒过滤的常见基准。

The problem of the optimal allocation (in the expected mean square error sense) of a measurement budget for particle filtering is addressed. We propose three different optimal intermittent filters, whose optimality criteria depend on the information available at the time of decision making. For the first, the stochastic program filter, the measurement times are given by a policy that determines whether a measurement should be taken based on the measurements already acquired. The second, called the offline filter, determines all measurement times at once by solving a combinatorial optimization program before any measurement acquisition. For the third one, which we call online filter, each time a new measurement is received, the next measurement time is recomputed to take all the information that is then available into account. We prove that in terms of expected mean square error, the stochastic program filter outperforms the online filter, which itself outperforms the offline filter. However, these filters are generally intractable. For this reason, the filter estimate is approximated by a particle filter. Moreover, the mean square error is approximated using a Monte-Carlo approach, and different optimization algorithms are compared to approximately solve the combinatorial programs (a random trial algorithm, greedy forward and backward algorithms, a simulated annealing algorithm, and a genetic algorithm). Finally, the performance of the proposed methods is illustrated on two examples: a tumor motion model and a common benchmark for particle filtering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源