论文标题
车辆动力学控制的双环状态估计:理论和实验
Twin-in-the-loop state estimation for vehicle dynamics control: theory and experiments
论文作者
论文摘要
在车辆动力学控制中,无法直接测量许多感兴趣的变量,因为传感器可能是昂贵,脆弱的,甚至不可用。因此,需要使用实时估计技术。先前的方法遭受了两个主要缺点:(i)模型不匹配引起的近似值可能会危害基于估计的控制的性能; (ii)每个新估计器都需要从划线的专用模型进行校准。在本文中,我们提出了一个双循环方案,其中临时模型被车辆的精确多体模拟器取代,通常可用于车辆制造商,适合估算任何板载变量,并与封闭循环观察者方案中的补偿器耦合。鉴于数字双胞胎的黑盒性质,基于贝叶斯优化,开发了一种用于观察者调整的数据驱动方法。与传统的基于模型的卡尔曼过滤相比,提出的估计方法对估计估计方法的有效性在使用跑车收集的数据集中显示。
In vehicle dynamics control, many variables of interest cannot be directly measured, as sensors might be costly, fragile, or even not available. Therefore, real-time estimation techniques need to be used. The previous approach suffers from two main drawbacks: (i) the approximations due to model mismatch might jeopardize the performance of the final estimation-based control; (ii) each new estimator requires the calibration from scratch of a dedicated model. In this paper, we propose a twin-in-the-loop scheme, where the ad-hoc model is replaced by an accurate multibody simulator of the vehicle, typically available to vehicles manufacturers and suitable for the estimation of any onboard variable, coupled with a compensator within a closed-loop observer scheme. Given the black-box nature of the digital twin, a data-driven methodology for observer tuning is developed, based on Bayesian optimization. The effectiveness of the proposed estimation method for the estimation of vehicle states and forces, as compared to traditional model-based Kalman filtering, is experimentally shown on a dataset collected with a sports car.