论文标题
DT2CAM:一个决策树到内容可寻址的内存框架
DT2CAM: A Decision Tree to Content Addressable Memory Framework
论文作者
论文摘要
决策树被认为是数据分类的最强大的工具之一。加速决策树搜索对于具有有限的功率和延迟预算的边缘应用程序至关重要。在本文中,我们为决策树(DT)推理加速度提出了一个可寻址内存(CAM)编译器。我们提出了一种新颖的“自适应精神”方案,该方案可导致紧凑的实现,并使有效的肉豆映射到三元含量可寻址的记忆,同时保持高推理精度。此外,开发了一种电阻式摄像机(recam)功能合成器,以将决策树映射到记录并进行功能模拟以进行能量,延迟和准确性评估。我们研究了硬件非理想性下的决策树准确性,包括设备缺陷,制造可变性和输入编码噪声。我们在各种DT数据集上测试我们的框架,包括\ textIt {给我一些信用},\ textit {titanic}和\ textit {covid-nir {covid-19}。我们的结果揭示了{42.4 \%}的能源节省,与最先进的硬件加速器相比,能源降低区域的产品更好,而每秒钟的最高可提供3.33亿美元的决策。
Decision trees are considered one of the most powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications that have limited power and latency budget. In this paper, we propose a Content Addressable Memory (CAM) Compiler for Decision Tree (DT) inference acceleration. We propose a novel "adaptive-precision" scheme that results in a compact implementation and enables an efficient bijective mapping to Ternary Content Addressable Memories while maintaining high inference accuracies. In addition, a Resistive-CAM (ReCAM) functional synthesizer is developed for mapping the decision tree to the ReCAM and performing functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various DT datasets including \textit{Give Me Some Credit}, \textit{Titanic}, and \textit{COVID-19}. Our results reveal up to {42.4\%} energy savings and up to 17.8x better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.