论文标题
部分可观测时空混沌系统的无模型预测
Probing carrier interactions using electron hydrodynamics
论文作者
论文摘要
当与持有动量的散射过程相比,电子流体动力学速度很慢。尽管满足这种情况所需的微观细节是特定于物质的,但实验可访问的当前密度具有显着的相似性。我们研究了电子流动流动对微观 - 延伸和动量散射过程速率的依赖性。我们开发了一个框架来生成随机的碰撞操作员,该碰撞算子尊重晶体对称性和保护定律,并在持有动量和动量延伸的寿命之间具有可调率的比率。使用这些碰撞运算符的各种随机实例,我们计算宏观电子粘度张量,并在通道几何形状上求解玻尔兹曼的传输方程(BTE),并在动量和动量 - 延伸寿命的网格上,以及不同的晶体对称组。我们发现,使用相同寿命的不同随机碰撞运算符产生非常相似的电流密度曲线,这意味着电流密度主要是对动量保护和放松的总体速度的探测。相比之下,粘度张量在固定寿命时有很大变化,这意味着诸如通道电阻之类的属性提供了基础散射过程的详细探针。这表明,虽然散射过程的细节印在电子粘度张量中,但对于许多应用,对于水力动力学电子流的理论计算,可以在空间分辨的BTE框架中使用实验可用的寿命,而不是需要对量从头开始碰撞碰撞运营商进行昂贵的计算。
Electron hydrodynamics arises when momentum-relaxing scattering processes are slow compared to momentum-conserving ones. While the microscopic details necessary to satisfy this condition are material-specific, experimentally accessible current densities share remarkable similarities. We study the dependence of electron hydrodynamic flows on the rates of momentum-relaxing and momentum-conserving scattering processes in a microscopics-agnostic way. We develop a framework for generating random collision operators which respect crystal symmetries and conservation laws and which have a tunable ratio between the momentum-conserving and momentum-relaxing lifetimes. Using various random instances of these collision operators, we calculate macroscopic electron viscosity tensors and solve the Boltzmann transport equation (BTE) in a channel geometry over a grid of momentum-conserving and momentum-relaxing lifetimes, and for different crystal symmetry groups. We find that different random collision operators using the same lifetimes produce very similar current density profiles, meaning that the current density is primarily a probe of the overall rates of momentum conservation and relaxation. By contrast, the viscosity tensor varies substantially at fixed lifetimes, meaning that properties like channel resistance provide detailed probes of the underlying scattering processes. This suggests that, while details of the scattering process are imprinted in the electronic viscosity tensor, for many applications theoretical calculations of hydrodynamic electron flows can use experimentally-available lifetimes within a spatially-resolved BTE framework rather than requiring the costly computation of ab initio collision operators.