论文标题

通过离散余弦变换和离散小波变换自动表面纹理分析

Automated Surface Texture Analysis via Discrete Cosine Transform and Discrete Wavelet Transform

论文作者

Yesilli, Melih C., Chen, Jisheng, Khasawneh, Firas A., Guo, Yang

论文摘要

表面粗糙度和质地对于工程组件的功能性能至关重要。有效,有效地分析粗糙度和纹理的能力非常需要确保许多表面产生过程中的表面质量,例如加工,表面机械处理等。离散小波转换(DWT)和离散的余弦变换(DCT)是表面粗糙度和纹理分析的两种常用的信号分解工具。两种方法都需要选择一个阈值将给定表面分解为其三个主要组成部分:形式,波浪状和粗糙度。但是,尽管DWT和DCT是ISO表面饰面标准的一部分,但没有关于如何计算这些阈值的系统指导,并且通常以情况为基础手动选择它们。这使得使用这些方法研究表面取决于用户的判断并限制其自动化潜力。因此,我们根据信息理论和信号能量提出了两种自动阈值选择算法。我们使用机器学习来使用模拟表面以及机械表面的数字显微镜图像来验证算法的成功。具体而言,我们为每个表面积或轮廓生成特征向量,并应用监督分类。将我们的结果与启发式阈值选择方法进行比较,显示出良好的一致性,平均精度高达95 \%。我们还将结果与高斯滤波(GF)进行了比较,并表明,尽管区域的GF结果可以产生较高的精度,但我们的结果表现出色的GF表面剖面的表现优于GF。我们进一步表明,我们的自动阈值选择在计算时间方面具有显着优势,这可以通过与DCT的启发式阈值相比,将模式计算数量减少数量级的数量降低。

Surface roughness and texture are critical to the functional performance of engineering components. The ability to analyze roughness and texture effectively and efficiently is much needed to ensure surface quality in many surface generation processes, such as machining, surface mechanical treatment, etc. Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) are two commonly used signal decomposition tools for surface roughness and texture analysis. Both methods require selecting a threshold to decompose a given surface into its three main components: form, waviness, and roughness. However, although DWT and DCT are part of the ISO surface finish standards, there exists no systematic guidance on how to compute these thresholds, and they are often manually selected on case by case basis. This makes utilizing these methods for studying surfaces dependent on the user's judgment and limits their automation potential. Therefore, we present two automatic threshold selection algorithms based on information theory and signal energy. We use machine learning to validate the success of our algorithms both using simulated surfaces as well as digital microscopy images of machined surfaces. Specifically, we generate feature vectors for each surface area or profile and apply supervised classification. Comparing our results with the heuristic threshold selection approach shows good agreement with mean accuracies as high as 95\%. We also compare our results with Gaussian filtering (GF) and show that while GF results for areas can yield slightly higher accuracies, our results outperform GF for surface profiles. We further show that our automatic threshold selection has significant advantages in terms of computational time as evidenced by decreasing the number of mode computations by an order of magnitude compared to the heuristic thresholding for DCT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源