论文标题

具有随机电势的天然哈密顿系统的非整合性和混乱

Non-integrability and chaos for natural Hamiltonian systems with a random potential

论文作者

Enciso, Alberto, Peralta-Salas, Daniel, Romaniega, Álvaro

论文摘要

考虑高斯随机潜力的合奏$ \ {v^l(q)\} _ {l = 1}^\ infty $在$ d $ d $维圆环上,基本上,$ v^l(q)$是真实价值的三角三角三角元的$ l $具有独立的标准常规变量。我们的主要结果确保了概率趋于$ l \ to \ infty $的概率,该动力系统与自然的汉密尔顿功能相关,由自然的汉密尔顿功能与随机电位定义,$ h^l:= \ frac12 | p |^2+ v^l(q)$,表现出许多与阳性vol-volume set neveriant tori的杂种区域。特别是,这些系统通常既无法与非脱位的第一积分也不可以集成。在任意紧凑的riemannian歧管的cotangent束上定义的随机天然汉密尔顿系统的类似结果。

Consider the ensemble of Gaussian random potentials $\{V^L(q)\}_{L=1}^\infty$ on the $d$-dimensional torus where, essentially, $V^L(q)$ is a real-valued trigonometric polynomial of degree $L$ whose coefficients are independent standard normal variables. Our main result ensures that, with a probability tending to 1 as $L\to\infty$, the dynamical system associated with the natural Hamiltonian function defined by this random potential, $H^L:=\frac12|p|^2+ V^L(q)$, exhibits a number of chaotic regions which coexist with a positive-volume set of invariant tori. In particular, these systems are typically neither integrable with non-degenerate first integrals nor ergodic. An analogous result for random natural Hamiltonian systems defined on the cotangent bundle of an arbitrary compact Riemannian manifold is presented too.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源