论文标题

DeepZipper II:在深度学习中搜索黑暗能源调查数据中的镜头超新星

DeepZipper II: Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning

论文作者

Morgan, Robert, Nord, B., Bechtol, K., Möller, A., Hartley, W. G., Birrer, S., González, S. J., Martinez, M., Gruendl, R. A., Buckley-Geer, E. J., Shajib, A. J., Rosell, A. Carnero, Lidman, C., Collett, T., Abbott, T. M. C., Aguena, M., Andrade-Oliveira, F., Annis, J., Bacon, D., Bocquet, S., Brooks, D., Burke, D. L., Kind, M. Carrasco, Carretero, J., Castander, F. J., Conselice, C., da Costa, L. N., Costanzi, M., De Vicente, J., Desai, S., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Friedel, D., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchón, F., Pereira, M. E. S., Pieres, A., Malagón, A. A. Plazas, Prat, J., Rodriguez-Monroy, M., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Varga, T. N.

论文摘要

重力镜头超新星(LSNE)是宇宙扩张的重要探针,但它们仍然很少见。当前的宇宙调查可能包含5-10个LSNE,而下一代实验预计将包含数百至数千个系统。我们在观察到的黑能调查(DES)5年SN领域中搜索这些系统-10 3平方米。度在五年内,大约每六个晚上每六个晚上每六个晚上在$ griz $ bands中成像。为了执行搜索,我们利用了DeepZipper方法:一个多分支深度学习体系结构,该体系结构对LSNE的图像级模拟进行了训练,同时从图像的时间序列中学习了空间和时间关系。我们发现,我们的方法在DES SN字段数据中获得了61.13%的LSN召回率为61.13%,假阳性率为0.02%。 DeepZipper从3,459,186个系统中选择了2,245名候选人($ M_I $ $ $ <$ <$ <$ 22.5)。我们采用人类视觉检查来审查网络选择的系统,并在DES SN领域找到三个候选LSNE。

Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain and 5-10 LSNe in total while next-generation experiments are expected to contain several hundreds to a few thousands of these systems. We search for these systems in observed Dark Energy Survey (DES) 5-year SN fields -- 10 3-sq. deg. regions of sky imaged in the $griz$ bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains a LSN recall of 61.13% and a false positive rate of 0.02% on the DES SN field data. DeepZipper selected 2,245 candidates from a magnitude-limited ($m_i$ $<$ 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源