论文标题
离散的希尔伯特空间和超级确定性
Discretised Hilbert Space and Superdeterminism
论文作者
论文摘要
在计算物理学中,这是近似具有离散表示形式的连续体系统的标准。在这里,我们考虑了量子力学的连续体复杂希尔伯特空间的特定离散化 - 平方振幅和复杂阶段的离散化是有理数。这种离散化的细度取决于有限的(Prime-number)参数$ P $。作为$ p \ rightarrow \ infty $,与计算物理学中的标准离散表示不同,该模型往往不会顺利地限制连续性限制。取而代之的是,量子力学的状态空间是$ p = \ infty $的离散模型的单数极限。使用三角函数的数字理论属性,可以证明,对于$ p $的足够大值,离散的希尔伯特空间准确地描述了固有的超级确定框架内量子系统的集合表示,其中贝尔定理的统计独立性假设被正式侵犯了贝尔定理中的统计独立性假设。从这个意义上讲,离散的模型可以解释违反贝尔的不平等现象,而不会吸引非局部性或无限现实。结果表明,关于其自然状态空间$ p $ - ad-adic公制,这种离散的框架不是微调(因此不是阴谋)。正如迈克尔·贝里(Michael Berry)所描述的那样,物理学的旧理论通常是新理论作为新理论的参数的奇异界限,将其设置为等于零或无穷大。使用此过程,我们可以回答斯科特·亚伦森(Scott Aaronson)提出的挑战,《超级主义者的批评》:解释何时在其候选人继任理论(这里是基于ippatived hilbert spacep的量子量的量子理论)的物理学(此处量子力学)的伟大理论(这里是毫无疑问地容纳”的,而不是由其候选人继任理论(这里是Quantimist themistic themist)的“光荣解释”。
In computational physics it is standard to approximate continuum systems with discretised representations. Here we consider a specific discretisation of the continuum complex Hilbert space of quantum mechanics - a discretisation where squared amplitudes and complex phases are rational numbers. The fineness of this discretisation is determined by a finite (prime-number) parameter $p$. As $p \rightarrow \infty$, unlike standard discretised representations in computational physics, this model does not tend smoothly to the continuum limit. Instead, the state space of quantum mechanics is a singular limit of the discretised model at $p=\infty$. Using number theoretic properties of trigonometric functions, it is shown that for large enough values of $p$, discretised Hilbert space accurately describes ensemble representations of quantum systems within an inherently superdeterministic framework, one where the Statistical Independence assumption in Bell's theorem is formally violated. In this sense, the discretised model can explain the violation of Bell inequalities without appealing to nonlocality or indefinite reality. It is shown that this discretised framework is not fine tuned (and hence not conspiratorial) with respect to its natural state-space $p$-adic metric. As described by Michael Berry, old theories of physics are typically the singular limits of new theories as a parameter of the new theory is set equal to zero or infinity. Using this, we can answer the challenge posed by Scott Aaronson, critic of superderminism: to explain when a great theory in physics (here quantum mechanics) has ever been `grudgingly accommodated' rather than `gloriously explained' by its candidate successor theory (here a superdeterministic theory of quantum physics based on discretised Hilbert space).