论文标题

从视频中持续的预测学习

Continual Predictive Learning from Videos

论文作者

Chen, Geng, Zhang, Wendong, Lu, Han, Gao, Siyu, Wang, Yunbo, Long, Mingsheng, Yang, Xiaokang

论文摘要

预测学习理想地在一个或多个给定环境中构建了世界物理过程的世界模型。典型的设置假设我们可以始终从所有环境中收集数据。但是,实际上,不同的预测任务可能会顺序到达,以便在整个培训过程中环境可能会持续变化。我们可以开发可以处理更现实,非平稳的物理环境的预测性学习算法吗?在本文中,我们在视频预测的背景下研究了一个新的持续学习问题,并观察到大多数现有的方法在此设置中遭受了严重的灾难性遗忘。为了解决这个问题,我们提出了持续的预测学习(CPL)方法,该方法通过预测经验重播来学习混合世界模型,并通过非参数任务推断进行测试时间适应。我们基于Robonet和KTH构建了两个新的基准,其中不同的任务对应于不同的物理机器人环境或人类行为。我们的方法被证明可以有效地减轻遗忘,并明显优于视频预测和持续学习中先前艺术的幼稚组合。

Predictive learning ideally builds the world model of physical processes in one or more given environments. Typical setups assume that we can collect data from all environments at all times. In practice, however, different prediction tasks may arrive sequentially so that the environments may change persistently throughout the training procedure. Can we develop predictive learning algorithms that can deal with more realistic, non-stationary physical environments? In this paper, we study a new continual learning problem in the context of video prediction, and observe that most existing methods suffer from severe catastrophic forgetting in this setup. To tackle this problem, we propose the continual predictive learning (CPL) approach, which learns a mixture world model via predictive experience replay and performs test-time adaptation with non-parametric task inference. We construct two new benchmarks based on RoboNet and KTH, in which different tasks correspond to different physical robotic environments or human actions. Our approach is shown to effectively mitigate forgetting and remarkably outperform the naïve combinations of previous art in video prediction and continual learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源