论文标题

模型可解释性方法的忠诚指标的比较研究

A Comparative Study of Faithfulness Metrics for Model Interpretability Methods

论文作者

Chan, Chun Sik, Kong, Huanqi, Liang, Guanqing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Interpretation methods to reveal the internal reasoning processes behind machine learning models have attracted increasing attention in recent years. To quantify the extent to which the identified interpretations truly reflect the intrinsic decision-making mechanisms, various faithfulness evaluation metrics have been proposed. However, we find that different faithfulness metrics show conflicting preferences when comparing different interpretations. Motivated by this observation, we aim to conduct a comprehensive and comparative study of the widely adopted faithfulness metrics. In particular, we introduce two assessment dimensions, namely diagnosticity and time complexity. Diagnosticity refers to the degree to which the faithfulness metric favours relatively faithful interpretations over randomly generated ones, and time complexity is measured by the average number of model forward passes. According to the experimental results, we find that sufficiency and comprehensiveness metrics have higher diagnosticity and lower time complexity than the other faithfulness metric

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源