论文标题

mottness,相弦和高$ T_C $超导性

Mottness, Phase String, and High-$T_c$ Superconductivity

论文作者

Zhao, Jing-Yu, Weng, Zheng-Yu

论文摘要

在二十世纪的物理学中,这是一个很大的发现,自然界中的基本粒子是由量规力决定的,其特征是不可整合的相位因素,即电荷$ q $从a到b点获得的基本粒子:$ p \ exp \ exp \ exp \ left(i \ frac {q}} {q} {\ hbar c} $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a y y y $是量规的潜力,$ p $代表路径排序。在具有强相关电子的多体系统中,如果通过相互作用打开所谓的莫特缝隙,相应的希尔伯特空间将从根本上改变。一种称为相弦的新型不整合相位因子将出现并替代常规的费米统计量以决定低洼的物理学。受Mott GAP的保护,在高$ T_C $ CUPRATE中清楚地识别出幅度> 1.5 eV的高质量,这种奇异的相位因子可以实施电子的分数,从而导致具有拓扑规结构的外来基本颗粒的双重世界。非富特 - 液体“父”状态将出现,其中无间隙的Landau Quasiparticle仅在所谓的Fermi Arc区域中部分健壮,而主要动力学则由两种类型的Gapped Spinons主导。抗铁磁性,超导性和具有全费米表面的费米液体被视为这种新母体状态的低温不稳定性。数字和实验都提供了这种紧急物理学的直接证据,这是高$ T_C $超导机制的核心。

It is a great discovery in physics of the twentieth century that the elementary particles in Nature are dictated by gauge forces, characterized by a nonintegrable phase factor that an elementary particle of charge $q$ acquires from A to B points: $$P \exp\left(i\frac{q}{\hbar c} \int_A^B A_μdx^μ\right)$$ where $A_μ$ is the gauge potential and $P$ stands for path ordering. In a many-body system of strongly correlated electrons, if the so-called Mott gap is opened up by interaction, the corresponding Hilbert space will be fundamentally changed. A novel nonintegrable phase factor known as phase-string will appear and replace the conventional Fermi statistics to dictate the low-lying physics. Protected by the Mott gap, which is clearly identified in the high-$T_c$ cuprate with a magnitude > 1.5 eV, such a singular phase factor can enforce a fractionalization of the electrons, leading to a dual world of exotic elementary particles with a topological gauge structure. A non-Fermi-liquid "parent" state will emerge, in which the gapless Landau quasiparticle is only partially robust around the so-called Fermi arc regions, while the main dynamics are dominated by two types of gapped spinons. Antiferromagnetism, superconductivity, and a Fermi liquid with full Fermi surface can be regarded as the low-temperature instabilities of this new parent state. Both numerics and experiments provide direct evidence for such an emergent physics of the Mottness, which lies in the core of a high-$T_c$ superconducting mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源