论文标题

学习与运动优化的隐式先验

Learning Implicit Priors for Motion Optimization

论文作者

Urain, Julen, Le, An T., Lambert, Alexander, Chalvatzaki, Georgia, Boots, Byron, Peters, Jan

论文摘要

在本文中,我们关注将基于能量的模型(EBM)作为运动优化的指导先验的问题。 EBM是一组神经网络,可以用合适的能量函数参数为参数的GIBBS分布来表示表达概率密度分布。由于其隐含的性质,可以轻松地将其作为优化因素或运动优化问题中的初始采样分布整合在一起,从而使它们成为良好的候选者,以将数据驱动的先验集成在运动优化问题中。在这项工作中,我们提出了一组所需的建模和算法选择,以使EBMS适应运动优化。我们研究了在学习EBM中将其他正则化的好处与基于梯度的优化器一起使用的好处,并提出了一组EBM架构,以学习用于操纵任务的可通用分布。我们介绍了多种情况,可以将EBM整合以进行运动优化,并评估学到的EBM的性能,以指导模拟和真实机器人实验。

In this paper, we focus on the problem of integrating Energy-based Models (EBM) as guiding priors for motion optimization. EBMs are a set of neural networks that can represent expressive probability density distributions in terms of a Gibbs distribution parameterized by a suitable energy function. Due to their implicit nature, they can easily be integrated as optimization factors or as initial sampling distributions in the motion optimization problem, making them good candidates to integrate data-driven priors in the motion optimization problem. In this work, we present a set of required modeling and algorithmic choices to adapt EBMs into motion optimization. We investigate the benefit of including additional regularizers in the learning of the EBMs to use them with gradient-based optimizers and we present a set of EBM architectures to learn generalizable distributions for manipulation tasks. We present multiple cases in which the EBM could be integrated for motion optimization and evaluate the performance of learned EBMs as guiding priors for both simulated and real robot experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源