论文标题

学习大规模原子动力学的本地模棱两可的表示

Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics

论文作者

Musaelian, Albert, Batzner, Simon, Johansson, Anders, Sun, Lixin, Owen, Cameron J., Kornbluth, Mordechai, Kozinsky, Boris

论文摘要

在自然科学中,分子和材料的能量和原子力的同时精确和计算有效的参数化是一个长期的目标。为了实现这一目标,神经信息传递通过沿原子图的迭代传递信息来描述原子的多体相关性,从而导致了范式转移。但是,信息的传播使并行计算变得困难,并限制了可以研究的长度尺度。另一方面,严格的基于本地描述符的方法可以扩展到大型系统,但目前与消息传递方法观察到的高精度不匹配。这项工作介绍了Allegro,这是一种严格的局部模样深度学习间潜力,同时表现出了平行计算的出色精度和可扩展性。 Allegro使用一系列学识渊博的表述的张量产品学习了原子坐标的多体函数,但不依赖消息传递。 Allegro对QM9的最新方法进行了改进,并修订了MD-17数据集。显示单个张量的产品层在QM9基准上超过了传递神经网络和变压器的现有深度消息。此外,Allegro还显示出对分布数据的显着概括。基于Allegro的分子动力学模拟恢复了无定形磷酸电解质的结构和动力学特性,这与第一原理计算非常吻合。最后,我们通过对1亿原子的动态模拟来证明Allegro的平行缩放。

A simultaneously accurate and computationally efficient parametrization of the energy and atomic forces of molecules and materials is a long-standing goal in the natural sciences. In pursuit of this goal, neural message passing has lead to a paradigm shift by describing many-body correlations of atoms through iteratively passing messages along an atomistic graph. This propagation of information, however, makes parallel computation difficult and limits the length scales that can be studied. Strictly local descriptor-based methods, on the other hand, can scale to large systems but do not currently match the high accuracy observed with message passing approaches. This work introduces Allegro, a strictly local equivariant deep learning interatomic potential that simultaneously exhibits excellent accuracy and scalability of parallel computation. Allegro learns many-body functions of atomic coordinates using a series of tensor products of learned equivariant representations, but without relying on message passing. Allegro obtains improvements over state-of-the-art methods on the QM9 and revised MD-17 data sets. A single tensor product layer is shown to outperform existing deep message passing neural networks and transformers on the QM9 benchmark. Furthermore, Allegro displays remarkable generalization to out-of-distribution data. Molecular dynamics simulations based on Allegro recover structural and kinetic properties of an amorphous phosphate electrolyte in excellent agreement with first principles calculations. Finally, we demonstrate the parallel scaling of Allegro with a dynamics simulation of 100 million atoms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源