论文标题

用自然语言反馈纠正机器人计划

Correcting Robot Plans with Natural Language Feedback

论文作者

Sharma, Pratyusha, Sundaralingam, Balakumar, Blukis, Valts, Paxton, Chris, Hermans, Tucker, Torralba, Antonio, Andreas, Jacob, Fox, Dieter

论文摘要

当人类为机器人设计成本或目标规格时,它们通常会产生模棱两可,指定的或超越计划者解决的能力的规格。在这些情况下,校正为人类在循环机器人控制中提供了宝贵的工具。更正可能采用新的目标规范,新约束(例如避免特定对象)或计划算法的提示(例如,访问特定的路点)。现有的校正方法(例如,使用操纵杆或直接操纵末端效应器)需要完整的远程操作或实时互动。在本文中,我们探讨了自然语言作为机器人校正的一种表现力和灵活的工具。我们描述了如何从自然语言句子映射到成本函数的转换。我们表明,这些转换使用户能够纠正目标,更新机器人动议以适应其他用户偏好,并从计划错误中恢复。可以利用这些更正,以在原始计划者失败的任务上获得81%和93%的成功率,并进行一两个语言校正。我们的方法使得在模拟环境和现实世界环境中构成多个约束并概括以看不见的场景,对象和句子。

When humans design cost or goal specifications for robots, they often produce specifications that are ambiguous, underspecified, or beyond planners' ability to solve. In these cases, corrections provide a valuable tool for human-in-the-loop robot control. Corrections might take the form of new goal specifications, new constraints (e.g. to avoid specific objects), or hints for planning algorithms (e.g. to visit specific waypoints). Existing correction methods (e.g. using a joystick or direct manipulation of an end effector) require full teleoperation or real-time interaction. In this paper, we explore natural language as an expressive and flexible tool for robot correction. We describe how to map from natural language sentences to transformations of cost functions. We show that these transformations enable users to correct goals, update robot motions to accommodate additional user preferences, and recover from planning errors. These corrections can be leveraged to get 81% and 93% success rates on tasks where the original planner failed, with either one or two language corrections. Our method makes it possible to compose multiple constraints and generalizes to unseen scenes, objects, and sentences in simulated environments and real-world environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源