论文标题

通过在癌症流行病学中应用的柔性多余危害建模的统一框架

A Unifying Framework for Flexible Excess Hazard Modeling with Applications in Cancer Epidemiology

论文作者

Eletti, A., Marra, G., Quaresma, M., Radice, R., Rubio, F. J.

论文摘要

多余的危害建模是基于人群的癌症生存研究的主要工具之一。确实,这种设置允许由于癌症而直接建模生存期,即使没有有关死亡原因的可靠信息,这在基于人群的癌症流行病学研究中很常见。我们为多余的危害提出了一个基于统一的基于链路的添加剂建模框架,该危险允许使用多种类型的协变量效应,包括空间和时间依赖性效应,使用任何类型的更顺畅的效果,例如薄板,立方体键,张量,张量产品和马尔可夫随机场。此外,该框架解释了所有类型的检查以及左截断。估计是通过使用有效且稳定的基于罚金的算法进行的,该算法通过广泛的模拟研究评估了经验性能。讨论了一些理论和渐近结果。使用来自英格兰诊断为乳腺癌(女性),结肠癌和肺癌的患者的基于人群的癌症数据进行了两项研究。结果支持非线性和时间依赖性效应以及空间变化的存在。提出的方法在R软件包GJRM中可用。

Excess hazard modeling is one of the main tools in population-based cancer survival research. Indeed, this setting allows for direct modeling of the survival due to cancer even in the absence of reliable information on the cause of death, which is common in population-based cancer epidemiology studies. We propose a unifying link-based additive modeling framework for the excess hazard that allows for the inclusion of many types of covariate effects, including spatial and time-dependent effects, using any type of smoother, such as thin plate, cubic splines, tensor products and Markov random fields. In addition, this framework accounts for all types of censoring as well as left-truncation. Estimation is conducted by using an efficient and stable penalized likelihood-based algorithm whose empirical performance is evaluated through extensive simulation studies. Some theoretical and asymptotic results are discussed. Two case studies are presented using population-based cancer data from patients diagnosed with breast (female), colon and lung cancers in England. The results support the presence of non-linear and time-dependent effects as well as spatial variation. The proposed approach is available in the R package GJRM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源