论文标题

MGIMN:用于几次播种文本分类的多元素交互式匹配网络

MGIMN: Multi-Grained Interactive Matching Network for Few-shot Text Classification

论文作者

Zhang, Jianhai, Maimaiti, Mieradilijiang, Gao, Xing, Zheng, Yuanhang, Zhang, Ji

论文摘要

文本分类努力概括为看不见的类,而每个类别的标记文本实例很少。在这样的几次学习(FSL)设置中,基于公制的元学习方法显示出令人鼓舞的结果。先前的研究主要旨在得出每个类别的原型表示。但是,他们忽略了构建一个紧凑的表示形式,表达每个班级的全部含义是挑战的。他们还忽略了捕获查询与支架设置之间的相互依赖性的重要性。为了解决这些问题,我们提出了一种基于元学习的方法MGIMN,该方法可以在实例上进行比较,然后进行聚合以生成班级匹配的向量而不是原型学习。实例比较的关键是在特定于类的上下文和特定情节上下文中的交互式匹配。广泛的实验表明,在标准FSL和广义FSL设置下,所提出的方法显着超过了现有的最新方法。

Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing state-of-the-art approaches, under both the standard FSL and generalized FSL settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源