论文标题

神经LagrangianSchrödinger桥:人口动态的扩散建模

Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics

论文作者

Koshizuka, Takeshi, Sato, Issei

论文摘要

种群动态是对生物种群大小的时间和空间变化的研究,是种群生态学的主要部分。分析人口动态的主要困难之一是,由于实验成本或测量限制,我们只能从固定点观测值中获得粗略的时间间隔的观察数据。最近,已提出通过使用连续归一化流(CNF)和动态最佳运输来建模种群动力学,以从观察到的人群中推断样品轨迹。尽管CNF中的样本行为是确定性的,但生物系统中的实际样本以本质上随机但定向的方式移动。此外,当样本从动力学系统中从点A移动到B点B时,其轨迹通常遵循最小动作的原理,其中相应的动作具有最小的可能值。为了满足样品轨迹的这些要求,我们制定了拉格朗日式Schrödinger桥(LSB)问题,并提议通过使用正则化神经SDE建模对流扩散过程来解决它。我们还开发了一个模型体系结构,该体系结构可以更快地计算损耗函数。实验结果表明,提出的方法即使对于高维数据也可以有效地近似人口级动力学,并且使用拉格朗日(Lagrangian)引入的先验知识使我们能够以随机行为估算样本级别的动力学。

Population dynamics is the study of temporal and spatial variation in the size of populations of organisms and is a major part of population ecology. One of the main difficulties in analyzing population dynamics is that we can only obtain observation data with coarse time intervals from fixed-point observations due to experimental costs or measurement constraints. Recently, modeling population dynamics by using continuous normalizing flows (CNFs) and dynamic optimal transport has been proposed to infer the sample trajectories from a fixed-point observed population. While the sample behavior in CNFs is deterministic, the actual sample in biological systems moves in an essentially random yet directional manner. Moreover, when a sample moves from point A to point B in dynamical systems, its trajectory typically follows the principle of least action in which the corresponding action has the smallest possible value. To satisfy these requirements of the sample trajectories, we formulate the Lagrangian Schrödinger bridge (LSB) problem and propose to solve it approximately by modeling the advection-diffusion process with regularized neural SDE. We also develop a model architecture that enables faster computation of the loss function. Experimental results show that the proposed method can efficiently approximate the population-level dynamics even for high-dimensional data and that using the prior knowledge introduced by the Lagrangian enables us to estimate the sample-level dynamics with stochastic behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源