论文标题

上临界维度上方的相变

Phase transitions above the upper critical dimension

论文作者

Berche, Bertrand, Ellis, Tim, Holovatch, Yurij, Kenna, Ralph

论文摘要

这些讲义提供了重新归一化组(RG)的概述,这是一个成功的框架,以了解高于上部关键维度上方的关键现象$ d _ {\ rm uc} $。在介绍了连续相变的缩放图片之后,我们讨论了高斯固定点捕获Landau平均场理论的缩放点的明显故障,该理论应保持在$ d _ {\ rm uc} $的热力学极限中。我们讲述了Fisher的危险级别变化的形式主义如何应用于热力学功能,以部分修复情况,但以高度计算和有限尺寸的缩放为代价,直到最近,这两种缩放均未应用于$ d _ {\ rm uc} $。我们回想起将RG与ISING系统的分析和数值结果相匹配的各种尝试的局限性。我们解释了与相关部门的危险不相关的扩展是将上述概念结合到全面的RG缩放图片中的关键,从而在所有维度上都有效地缩放了高度尺寸和有限尺寸的扩展。我们收集我们认为的是该理论的当前状态,包括一些新的见解和结果。本文对迈克尔·费舍尔(Michael Fisher)的记忆深表感谢,迈克尔·费舍尔(Michael Fisher)介绍了许多讨论的概念,半个世纪后,他们为他们的进步做出了贡献。

These lecture notes provide an overview of the renormalization group (RG) as a successful framework to understand critical phenomena above the upper critical dimension $d_{\rm uc}$. After an introduction to the scaling picture of continuous phase transitions, we discuss the apparent failure of the Gaussian fixed point to capture scaling for Landau mean-field theory, which should hold in the thermodynamic limit above $d_{\rm uc}$. We recount how Fisher's dangerous-irrelevant-variable formalism applied to thermodynamic functions partially repairs the situation but at the expense of hyperscaling and finite-size scaling, both of which were, until recently, believed not to apply above $d_{\rm uc}$. We recall limitations of various attempts to match the RG with analytical and numerical results for Ising systems. We explain how the extension of dangerous irrelevancy to the correlation sector is key to marrying the above concepts into a comprehensive RG scaling picture that renders hyperscaling and finite-size scaling valid in all dimensions. We collect what we believe is the current status of the theory, including some new insights and results. This paper is in grateful memory of Michael Fisher who introduced many of the concepts discussed and who, half a century later, contributed to their advancement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源