论文标题
心电图的数据增强
Data Augmentation for Electrocardiograms
论文作者
论文摘要
神经网络模型在预测12铅心电图(ECG)的病理和结果方面表现出了令人印象深刻的表现。但是,这些模型通常需要接受大型,标签的数据集培训,这些数据集无法用于许多感兴趣的预测任务。在这项工作中,我们进行了一项经验研究,研究培训时间数据扩展方法是否可以用于提高此类数据筛查ECG预测问题的性能。我们研究数据增强策略在检测心电图中心脏异常时如何影响模型性能。由于我们发现现有的增强策略的有效性高度依赖于任务,我们引入了一种新方法Taskaug,该方法定义了一种灵活的增强策略,该策略是按任务进行了优化的。我们概述了一种有效的学习算法,以便在嵌套优化和隐式区分方面利用了最新的工作。在实验中,考虑三个数据集和八个预测任务,我们发现Taskaug在先前的工作中具有竞争力或改进,并且学识渊博的政策阐明了哪些转型对不同任务最有效。我们从实验评估中提取了关键的见解,从而产生了将数据增强应用于ECG预测问题的最佳实践。
Neural network models have demonstrated impressive performance in predicting pathologies and outcomes from the 12-lead electrocardiogram (ECG). However, these models often need to be trained with large, labelled datasets, which are not available for many predictive tasks of interest. In this work, we perform an empirical study examining whether training time data augmentation methods can be used to improve performance on such data-scarce ECG prediction problems. We investigate how data augmentation strategies impact model performance when detecting cardiac abnormalities from the ECG. Motivated by our finding that the effectiveness of existing augmentation strategies is highly task-dependent, we introduce a new method, TaskAug, which defines a flexible augmentation policy that is optimized on a per-task basis. We outline an efficient learning algorithm to do so that leverages recent work in nested optimization and implicit differentiation. In experiments, considering three datasets and eight predictive tasks, we find that TaskAug is competitive with or improves on prior work, and the learned policies shed light on what transformations are most effective for different tasks. We distill key insights from our experimental evaluation, generating a set of best practices for applying data augmentation to ECG prediction problems.